Initial commit, start of notes and generic macros
This commit is contained in:
6
.gitignore
vendored
Normal file
6
.gitignore
vendored
Normal file
@ -0,0 +1,6 @@
|
||||
*.aux
|
||||
*.fls
|
||||
*.fdb_latexmk
|
||||
*.log
|
||||
*.pdf
|
||||
*.out
|
26
Makefile
Normal file
26
Makefile
Normal file
@ -0,0 +1,26 @@
|
||||
DEPS = deps/macros.sty deps/setup.sty
|
||||
SOURCES = $(wildcard *.tex)
|
||||
TARGETS = $(SOURCES:.tex=)
|
||||
WATCH_TARGETS = $(addsuffix -watch,$(TARGETS))
|
||||
CHECK_TARGETS = $(addsuffix -check,$(TARGETS))
|
||||
|
||||
.PHONY: all check clean $(TARGETS) $(WATCH_TARGETS) $(CHECK_TARGETS)
|
||||
|
||||
all: $(TARGETS)
|
||||
|
||||
|
||||
check: $(CHECK_TARGETS)
|
||||
|
||||
|
||||
$(TARGETS): %: %.tex
|
||||
latexmk -pdf $<
|
||||
|
||||
$(WATCH_TARGETS): %-watch: %.tex
|
||||
latexmk -pdf -pvc -interaction=nonstopmode $<
|
||||
|
||||
$(CHECK_TARGETS): %-check: %
|
||||
@! grep -A1 "Package nag Warning" $*.log
|
||||
|
||||
clean:
|
||||
latexmk -c
|
||||
rm -f *.pdf
|
55
deps/macros.sty
vendored
Normal file
55
deps/macros.sty
vendored
Normal file
@ -0,0 +1,55 @@
|
||||
\NeedsTeXFormat{LaTeX2e}[1994/06/01]
|
||||
\ProvidesPackage{omicron/macros}[2025-05-25 omicron/macros package]
|
||||
|
||||
\RequirePackage{mathtools}
|
||||
\RequirePackage{amssymb}
|
||||
\RequirePackage{amsthm}
|
||||
|
||||
% create \set and \smid macro to create sets and scaling bar for set builder notation.
|
||||
\newcommand{\set}[1]{\left\{ #1 \right\}}
|
||||
\newcommand{\smid}{\,\middle|\,}
|
||||
|
||||
% easier access to blackboard bold
|
||||
\@ifpackageloaded{dsfont}{%
|
||||
\let\bb\mathds
|
||||
}{%
|
||||
\let\bb\mathbb
|
||||
}
|
||||
|
||||
% swap default slanted/curly versions of common relations
|
||||
\let\leqflat\leq
|
||||
\let\leq\leqslant
|
||||
\let\geqflat\geq
|
||||
\let\geq\geqslant
|
||||
\let\precflateq\preceq
|
||||
\let\preceq\preccurlyeq
|
||||
\let\succflateq\succeq
|
||||
\let\succeq\succcurlyeq
|
||||
|
||||
% swap varepsilon and epsilon
|
||||
\let\uglyepsilon\epsilon
|
||||
\let\epsilon\varepsilon
|
||||
\let\varepsilon\uglyepsilon
|
||||
|
||||
% swap varphi and phi
|
||||
\let\uglyphi\phi
|
||||
\let\phi\varphi
|
||||
\let\varphi\uglyphi
|
||||
|
||||
% scaling abs value
|
||||
\newcommand{\abs}[1]{\left|#1\right|}
|
||||
|
||||
% scaling parenthesis
|
||||
\newcommand{\paren}[1]{\left(#1\right)}
|
||||
|
||||
% Probability function
|
||||
\DeclareMathOperator{\probop}{P}
|
||||
\newcommand{\prob}[1]{\probop\paren{#1}}
|
||||
|
||||
% Complement superscript operator
|
||||
\DeclareMathOperator{\complop}{c}
|
||||
\newcommand{\mycomplement}{{\complop}}
|
||||
\let\altcomplement\complement
|
||||
\let\complement\mycomplement
|
||||
|
||||
\endinput
|
62
deps/setup.sty
vendored
Normal file
62
deps/setup.sty
vendored
Normal file
@ -0,0 +1,62 @@
|
||||
\NeedsTeXFormat{LaTeX2e}[1994/06/01]
|
||||
\ProvidesPackage{omicron/setup}[2025-05-25 omicron/setup package]
|
||||
|
||||
% better typesetting
|
||||
\RequirePackage[T1]{fontenc}
|
||||
\RequirePackage{lmodern}
|
||||
\RequirePackage{microtype}
|
||||
\RequirePackage{bbm}
|
||||
\RequirePackage{dsfont}
|
||||
|
||||
% math essentials
|
||||
\RequirePackage{amsmath}
|
||||
\RequirePackage{amssymb}
|
||||
\RequirePackage{amsthm}
|
||||
\RequirePackage{thmtools}
|
||||
\RequirePackage{mathtools}
|
||||
|
||||
% for title page edits
|
||||
\RequirePackage{titling}
|
||||
|
||||
% utility
|
||||
\RequirePackage{enumitem}
|
||||
\RequirePackage{hyperref}
|
||||
\RequirePackage{cleveref}
|
||||
\RequirePackage{todonotes}
|
||||
|
||||
% Helps create better more modern LaTeX
|
||||
\RequirePackage[l2tabu, orthodox]{nag}
|
||||
|
||||
% lorem ipsum
|
||||
\RequirePackage{lipsum}
|
||||
|
||||
% No indent style paragraphs
|
||||
\setlength{\parindent}{0pt}
|
||||
\setlength{\parskip}{0.5\baselineskip plus 2pt minus 1pt}
|
||||
|
||||
% subtitle macro
|
||||
\newcommand{\subtitle}[1]{%
|
||||
\posttitle{%
|
||||
\par\end{center}
|
||||
\begin{center}
|
||||
\parbox{0.7\textwidth}{\centering#1}
|
||||
\end{center}
|
||||
\vskip0.5em}%
|
||||
}
|
||||
|
||||
% Remove the date completely from the title page
|
||||
\predate{}
|
||||
\date{}
|
||||
\postdate{}
|
||||
|
||||
% Essential theorem environments
|
||||
\declaretheorem[style=definition, name=Definition]{definition}
|
||||
\declaretheorem[style=definition, sibling=definition, name=Theorem]{theorem}
|
||||
\declaretheorem[style=definition, sibling=definition, name=Lemma]{lemma}
|
||||
\declaretheorem[style=definition, sibling=definition, name=Observation]{observation}
|
||||
\declaretheorem[style=definition, sibling=definition, name=Rules]{rules}
|
||||
|
||||
% default enumeration style
|
||||
\setlist[enumerate]{label=(\arabic*)}
|
||||
|
||||
\endinput
|
182
probability.tex
Normal file
182
probability.tex
Normal file
@ -0,0 +1,182 @@
|
||||
\documentclass{article}
|
||||
|
||||
\usepackage{deps/setup}
|
||||
\usepackage{deps/macros}
|
||||
\usepackage{showkeys}
|
||||
|
||||
\title{Probability Notes}
|
||||
\subtitle{Based on KUL Course Notes for ``Kansrekenen I'' (2018) by Tim Verdonck}
|
||||
\author{omicron}
|
||||
|
||||
\begin{document}
|
||||
\maketitle
|
||||
|
||||
\section{Probability Spaces}
|
||||
|
||||
\begin{definition}[Sigma Algebra]\label{def:sigma-algebra}
|
||||
A collection $\mathcal A$ of subsets of $\Omega$ is called a
|
||||
\emph{sigma-algebra} (or $\sigma$-algebra) on the universe $\Omega$ if
|
||||
$\mathcal A$ satisfies the following axioms:
|
||||
\begin{enumerate}
|
||||
\item $\Omega \in \mathcal A$,
|
||||
\item $A \in \mathcal A \implies A^\complement \in \mathcal A$,
|
||||
\item $\forall n\in\bb N : A_n \in \mathcal A \implies
|
||||
\paren{\bigcup_{n\in \bb N} A_n} \in \mathcal A$.
|
||||
\end{enumerate}
|
||||
We call the pair $(\Omega, \mathcal A)$ a \emph{measurable space} and the
|
||||
elements of $\mathcal A$ \emph{events}.
|
||||
\end{definition}
|
||||
|
||||
\begin{observation}\label{obs:has-empty}
|
||||
Let $(\Omega, \mathcal A)$ be a measurable space, then $\emptyset \in
|
||||
\mathcal A$.
|
||||
\end{observation}
|
||||
\begin{proof}
|
||||
By \cref{def:sigma-algebra} we have $\Omega \in \mathcal A$ and
|
||||
$\Omega^\complement = \emptyset \in \mathcal A$.
|
||||
\end{proof}
|
||||
|
||||
\begin{definition}[Probability Measure]\label{def:probability-measure}
|
||||
A function $\probop : \mathcal A \to \bb R$ is called a \emph{probability
|
||||
measure} if it satisfies the following axioms:
|
||||
\begin{enumerate}
|
||||
\item $\prob{\Omega} = 1$.
|
||||
\item $\forall A \in \mathcal A : \prob A \geq 0$.
|
||||
\item For a family of pairwise disjoint sets $A_1, A_2, \ldots \in
|
||||
\mathcal A$,
|
||||
\[
|
||||
\prob{\bigcup_{n \in \bb N} A_n} = \sum_{n \in \bb N}
|
||||
\prob{A_n}.
|
||||
\]
|
||||
We call this axiom the axiom of \emph{countable additivity} or
|
||||
\emph{$\sigma$-additivity}.
|
||||
\end{enumerate}
|
||||
The triple $(\Omega, \mathcal A, \probop)$ is called a \emph{probability
|
||||
space}, comprised of the universe $\Omega$, a $\sigma$-algebra $\mathcal A$
|
||||
and a probability measure $\probop$.
|
||||
\end{definition}
|
||||
\begin{observation}\label{obs:prob-empty}
|
||||
Let $(\Omega, \mathcal A, \probop)$ be a probability space, then
|
||||
$\prob{\emptyset} = 0$.
|
||||
\end{observation}
|
||||
\begin{proof}
|
||||
Note that $\emptyset = \bigcup_{n\in\bb N} \emptyset$ and that the
|
||||
right-hand side is a union of disjoint sets. By applying the
|
||||
sigma-additivity axiom we get \[ \prob{\emptyset} = \prob{\bigcup_{n\in\bb
|
||||
N} \emptyset} = \sum_{n\in\bb N} \prob{\emptyset}. \] Since $P$ takes real
|
||||
values we know the series must converge. This can only happen if
|
||||
$P(\emptyset) = 0$.
|
||||
\end{proof}
|
||||
|
||||
\begin{definition}[Monotonous sequence of sets]\label{def:monotonous-sets}
|
||||
A sequence of sets $\paren{A_n}_{n\in\bb N_0}$ is said to be
|
||||
\emph{increasing} if $A_n \subseteq A_{n+1}$ for
|
||||
every $n \in \bb N_0$. Similarly, a sequence is called \emph{decreasing}
|
||||
if $A_n \supseteq A_{n+1}$ for every $n \in \bb
|
||||
N_0$. A sequence is called \emph{monotonous} if it is either increasing or
|
||||
decreasing. For such sequences we define
|
||||
\[
|
||||
\lim_{n\to\infty} A_n = \begin{cases}
|
||||
\bigcup_{n=1}^{\infty} A_n & \text{if $A_n$ is increasing}, \\
|
||||
\bigcap_{n=1}^{\infty} A_n & \text{if $A_n$ is decreasing}. \\
|
||||
\end{cases}
|
||||
\]
|
||||
\end{definition}
|
||||
|
||||
\begin{theorem}
|
||||
Let $(\Omega, \mathcal A, \probop)$ be a probability space.
|
||||
\begin{enumerate}
|
||||
\item \emph{Finite additivity} for a pairwise disjoint family of sets
|
||||
$\set{A_n \in \mathcal A \smid n \in \set{1, \dots, N}}$
|
||||
\[
|
||||
\prob{\bigcup_{n=1}^{N} A_n} = \sum_{n=1}^{N} \prob{A_n}.
|
||||
\]
|
||||
\item $\forall A \in \mathcal A : \prob{A^\complement} = 1 - \prob{A}$.
|
||||
\item For a monotonous sequence $\paren{A_n}_{n\in\bb N_0}$
|
||||
\[
|
||||
\prob{\lim_{n\to\infty} A_n} = \lim_{n\to\infty} \prob{A_n}
|
||||
\]
|
||||
\end{enumerate}
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
\begin{enumerate}
|
||||
\item We start by showing finite additivity as defined above holds. Consider the
|
||||
finite family of sets defined above, we define a related infinite family of
|
||||
sets as follows
|
||||
\[
|
||||
B_n = \begin{cases}
|
||||
A_n & \text{if $n \leq N$}, \\
|
||||
\emptyset & \text{otherwise}.
|
||||
\end{cases}
|
||||
\]
|
||||
Note that since we only added empty sets this new family is also pairwise
|
||||
disjoint and that the countable union over $B_n$ is equal to the finite
|
||||
union over $A_n$. This leads to
|
||||
\begin{align*}
|
||||
\prob{\bigcup_{n=1}^{N} A_n}
|
||||
&= \prob{\bigcup_{n=1}^{\infty} B_n}. \\
|
||||
\intertext{Next we apply countable additivity by \cref{def:probability-measure} and get}
|
||||
&= \sum_{n=1}^{\infty} \prob{B_n} \\
|
||||
&= \sum_{n=1}^{N} \prob{A_n} + \sum_{n=N+1}^{\infty} \prob{\emptyset}.
|
||||
\intertext{In \cref{obs:prob-empty} we concluded $\prob{\emptyset} = 0$ so}
|
||||
&= \sum_{n=1}^{N} \prob{A_n}.
|
||||
\end{align*}
|
||||
This concludes the proof of finite additivity.
|
||||
|
||||
\item Let $A \in \mathcal A$ be arbitrary. By
|
||||
\cref{def:probability-measure}, finite additivity and the definition of
|
||||
complement we get
|
||||
\[
|
||||
1 = \prob{\Omega} = \prob{A \cup A^\complement} = \prob{A} + \prob{A^\complement}.
|
||||
\]
|
||||
Subtracting $\prob{A}$ from both sides gives us
|
||||
\[
|
||||
\prob{A^\complement} = 1 - \prob{A}.
|
||||
\]
|
||||
This concludes the proof of the second point.
|
||||
\item Let $(A_n)_{n\in\bb N_0}$ be a monotonous sequence in $\mathcal A$.
|
||||
We first consider the case where $(A_n)$ is increasing. We define a
|
||||
related sequence as follows
|
||||
\[
|
||||
B_n = \begin{cases}
|
||||
A_1 & \text{if $n=1$,} \\
|
||||
A_n \setminus A_{n-1} & \text{otherwise.}
|
||||
\end{cases}
|
||||
\]
|
||||
Note that $(B_n)$ is pairwise disjoint and that for any $n \in \bb N_0$
|
||||
\[
|
||||
\bigcup_{i=1}^n A_i = \bigcup_{i=1}^n B_i = A_n
|
||||
\]
|
||||
By using the properties of this related sequence and by applying sigma
|
||||
additivity we get
|
||||
\begin{align*}
|
||||
\prob{\lim_{n\to\infty} A_n}
|
||||
&= \prob{\bigcup_{i=1}^\infty A_i} \\
|
||||
&= \prob{\bigcup_{i=1}^\infty B_i} \\
|
||||
&= \sum_{i=1}^\infty \prob{B_i}. \\
|
||||
\intertext{Next we use the definition of a series and apply finite
|
||||
additivity (in reverse) as follows}
|
||||
&= \lim_{n\to\infty} \sum_{i=1}^n \prob{B_i} \\
|
||||
&= \lim_{n\to\infty} \prob{\bigcup_{i=1}^n B_i} \\
|
||||
&= \lim_{n\to\infty} \prob{A_n}.
|
||||
\end{align*}
|
||||
This concludes of the proof when $(A_n)$ is increasing. Next assume
|
||||
that $(A_n)$ is decreasing. Note that the complement sequence
|
||||
$(A_n^\complement)$ is an increasing sequence. Combined with De
|
||||
Morgan's laws and the earlier formula for the probability of a
|
||||
complement we get
|
||||
\begin{align*}
|
||||
\prob{\lim_{n\to\infty} A_n}
|
||||
&= \prob{\bigcap_{i=1}^\infty A_i} \\
|
||||
&= 1 - \prob{\bigcup_{i=1}^\infty A_i^\complement} \\
|
||||
&= 1 - \prob{\lim_{n\to\infty} A_n^\complement}. \\
|
||||
\intertext{since the complement sequence is an increasing sequence
|
||||
we can apply the result from before and we get}
|
||||
&= 1 - \lim_{n\to\infty} \prob{A_n^\complement} \\
|
||||
&= 1 - \lim_{n\to\infty} 1 - \prob{A_n} \\
|
||||
&= \lim_{n\to\infty} \prob{A_n}.
|
||||
\end{align*}
|
||||
This concludes the proof for the final case. \qedhere
|
||||
\end{enumerate}
|
||||
\end{proof}
|
||||
\end{document}
|
Reference in New Issue
Block a user