Implement two pass encoding
Some checks failed
Validate the build / validate-build (push) Failing after 50s

First pass:
 - collect information for numbers, registers and which instructions
   contain label references
 - encode all instructions that don't contain label references
 - Set (temporary) addresses for each instruction

Second pass:
 - Collect information about label references (address, offset, size)
 - encode all instructions that contain label references
 - Update (if necessary) addresses for each instruction

 The second pass is iterated 10 times or until no instructions change
 size, whichever comes first.
This commit is contained in:
omicron 2025-04-22 02:08:38 +02:00
parent 9a1570e3e5
commit fab5bedf3d

View File

@ -6,6 +6,31 @@
#include <errno.h>
#include <string.h>
/**
* General encoder flow:
*
* There are 2 major passes the encoder does:
*
* First pass:
* - Run through the AST and collect information:
* - Set register values
* - Parse/set number values
* - Mark all instructions that use label references
* - Encode all instructions that don't use label references
* - Update addresses of all labels and instructions. Use an estimated
* instruction size for those instructions that use label references.
*
* Second pass:
* - Run through the AST for all instructions that use label references and
* collect size information using the estimated addresses from pass 1
* - Encode label references with the estimated addresses, this fixes their
* size.
* - Update all addresses
*
* Iteration:
* - Repeat the second pass until addresses converge
*/
error_t *const err_encoder_invalid_register =
&(error_t){.message = "Invalid register"};
error_t *const err_encoder_number_overflow =
@ -219,9 +244,11 @@ error_t *encoder_collect_info(encoder_t *encoder, ast_node_t *node,
ast_node_t *statement) {
error_t *err = nullptr;
if (encoder_is_symbols_node(node))
if (encoder_is_symbols_node(node)) {
err = symbol_table_update(encoder->symbols, node, statement);
else if (node->id == NODE_NUMBER)
if (statement->id == NODE_INSTRUCTION)
statement->value.instruction.has_reference = true;
} else if (node->id == NODE_NUMBER)
err = encoder_set_number_value(node);
else if (node->id == NODE_REGISTER)
err = encoder_set_register_value(node);
@ -238,31 +265,6 @@ error_t *encoder_collect_info(encoder_t *encoder, ast_node_t *node,
return nullptr;
}
/**
* Perform the initial pass over the AST.
*
* - Collect information about the operands
* - parse and set number values
* - set the register values
* - determine if label references are used by an instruction
* - encode instructions that don't use label references
* - determine estimated addresses of each statement
*
*/
error_t *encoder_first_pass(encoder_t *encoder) {
ast_node_t *root = encoder->ast;
assert(root->id == NODE_PROGRAM);
for (size_t i = 0; i < root->len; ++i) {
ast_node_t *statement = root->children[i];
error_t *err = encoder_collect_info(encoder, statement, statement);
if (err)
return err;
}
return nullptr;
}
bool is_operand_match(operand_info_t *info, ast_node_t *operand) {
switch (info->kind) {
case OPERAND_REGISTER:
@ -506,20 +508,130 @@ error_t *encoder_encode_instruction(encoder_t *encoder,
}
/**
* Perform the second pass that performs actual encoding. Will use
* placeholder values for label references because instruction size has not
* yet been determined.
* Perform the initial pass over the AST.
*
* - Collect information about the operands
* - parse and set number values
* - set the register values
* - determine if label references are used by an instruction
* - encode instructions that don't use label references
* - determine estimated addresses of each statement
*
*/
error_t *encoder_second_pass(encoder_t *encoder) {
constexpr size_t instruction_size_estimate = 10;
error_t *encoder_first_pass(encoder_t *encoder) {
ast_node_t *root = encoder->ast;
assert(root->id == NODE_PROGRAM);
uintptr_t address = 0;
for (size_t i = 0; i < root->len; ++i) {
if (root->children[i]->id != NODE_INSTRUCTION)
continue;
ast_node_t *instruction = root->children[i];
error_t *err = encoder_encode_instruction(encoder, instruction);
ast_node_t *statement = root->children[i];
error_t *err = encoder_collect_info(encoder, statement, statement);
if (err)
return err;
if (statement->id == NODE_INSTRUCTION &&
statement->value.instruction.has_reference == false) {
err = encoder_encode_instruction(encoder, statement);
if (err)
return err;
statement->value.instruction.address = address;
address += statement->value.instruction.encoding.len;
} else if (statement->id == NODE_INSTRUCTION) {
statement->value.instruction.encoding.len =
instruction_size_estimate;
statement->value.instruction.address = address;
address += instruction_size_estimate;
} else if (statement->id == NODE_LABEL) {
statement->value.instruction.address = address;
}
}
return nullptr;
}
operand_size_t signed_to_size_mask(int64_t value) {
operand_size_t size = OPERAND_SIZE_64;
if (value >= INT8_MIN && value <= INT8_MAX)
size |= OPERAND_SIZE_8;
if (value >= INT16_MIN && value <= INT16_MAX)
size |= OPERAND_SIZE_16;
if (value >= INT32_MIN && value <= INT32_MAX)
size |= OPERAND_SIZE_32;
return size;
}
int64_t statement_offset(ast_node_t *from, ast_node_t *to) {
assert(from->id == NODE_LABEL || from->id == NODE_INSTRUCTION);
assert(to->id == NODE_LABEL || to->id == NODE_INSTRUCTION);
int64_t from_addr =
from->value.instruction.address + from->value.instruction.encoding.len;
int64_t to_addr = to->value.instruction.address;
return to_addr - from_addr;
}
error_t *encoder_collect_label_info(encoder_t *encoder, ast_node_t *node,
ast_node_t *statement) {
assert(statement->id == NODE_INSTRUCTION);
if (node->id == NODE_LABEL_REFERENCE) {
const char *name = node->token_entry->token.value;
symbol_t *symbol = symbol_table_lookup(encoder->symbols, name);
assert(symbol && symbol->statement &&
symbol->statement->id == NODE_LABEL);
int64_t offset = statement_offset(statement, symbol->statement);
int64_t absolute = symbol->statement->value.instruction.address;
operand_size_t size = signed_to_size_mask(offset);
node->value.reference.address = absolute;
node->value.reference.offset = offset;
node->value.reference.size = size;
}
return nullptr;
}
/**
* Perform the second pass. Updates the label info and encodes all instructions
* that have a label reference.that performs actual encoding.
*/
error_t *encoder_second_pass(encoder_t *encoder, bool *did_update) {
ast_node_t *root = encoder->ast;
*did_update = false;
int64_t address = 0;
for (size_t i = 0; i < root->len; ++i) {
ast_node_t *statement = root->children[i];
if (statement->id == NODE_INSTRUCTION &&
statement->value.instruction.has_reference) {
statement->value.instruction.address = address;
size_t before = statement->value.instruction.encoding.len;
error_t *err =
encoder_collect_label_info(encoder, statement, statement);
if (err)
return err;
err = encoder_encode_instruction(encoder, statement);
if (err)
return err;
size_t after = statement->value.instruction.encoding.len;
address += after;
*did_update = *did_update || (before != after);
} else if (statement->id == NODE_INSTRUCTION &&
statement->value.instruction.has_reference) {
statement->value.instruction.address = address;
address += statement->value.instruction.encoding.len;
} else if (statement->id == NODE_LABEL) {
statement->value.label.address = address;
}
address += statement->value.instruction.encoding.len;
}
return nullptr;
}
@ -549,5 +661,12 @@ error_t *encoder_encode(encoder_t *encoder) {
err = encoder_check_symbols(encoder);
if (err)
return err;
return encoder_second_pass(encoder);
bool did_update = true;
for (int i = 0; i < 10 && did_update; ++i) {
err = encoder_second_pass(encoder, &did_update);
if (err)
return err;
}
return nullptr;
}