\documentclass{article} \usepackage{deps/setup} \usepackage{deps/macros} \usepackage{showkeys} \title{Probability Notes} \subtitle{Based on KUL Course Notes for ``Kansrekenen I'' (2018) by Tim Verdonck} \author{omicron} \begin{document} \maketitle \section{Probability Spaces} \begin{definition}[Sigma Algebra]\label{def:sigma-algebra} A collection $\mathcal A$ of subsets of $\Omega$ is called a \emph{sigma-algebra} (or $\sigma$-algebra) on the universe $\Omega$ if $\mathcal A$ satisfies the following axioms: \begin{enumerate} \item $\Omega \in \mathcal A$, \item $A \in \mathcal A \implies A^\complement \in \mathcal A$, \item $\forall n\in\bb N : A_n \in \mathcal A \implies \paren{\bigcup_{n\in \bb N} A_n} \in \mathcal A$. \end{enumerate} We call the pair $(\Omega, \mathcal A)$ a \emph{measurable space} and the elements of $\mathcal A$ \emph{events}. \end{definition} \begin{observation}\label{obs:has-empty} Let $(\Omega, \mathcal A)$ be a measurable space, then $\emptyset \in \mathcal A$. \end{observation} \begin{proof} By \cref{def:sigma-algebra} we have $\Omega \in \mathcal A$ and $\Omega^\complement = \emptyset \in \mathcal A$. \end{proof} \begin{definition}[Probability Measure]\label{def:probability-measure} A function $\probop : \mathcal A \to \bb R$ is called a \emph{probability measure} if it satisfies the following axioms: \begin{enumerate} \item $\prob{\Omega} = 1$. \item $\forall A \in \mathcal A : \prob A \geq 0$. \item For a family of pairwise disjoint sets $A_1, A_2, \ldots \in \mathcal A$, \[ \prob{\bigcup_{n \in \bb N} A_n} = \sum_{n \in \bb N} \prob{A_n}. \] We call this axiom the axiom of \emph{countable additivity} or \emph{$\sigma$-additivity}. \end{enumerate} The triple $(\Omega, \mathcal A, \probop)$ is called a \emph{probability space}, comprised of the universe $\Omega$, a $\sigma$-algebra $\mathcal A$ and a probability measure $\probop$. \end{definition} \begin{observation}\label{obs:prob-empty} Let $(\Omega, \mathcal A, \probop)$ be a probability space, then $\prob{\emptyset} = 0$. \end{observation} \begin{proof} Note that $\emptyset = \bigcup_{n\in\bb N} \emptyset$ and that the right-hand side is a union of disjoint sets. By applying the sigma-additivity axiom we get \[ \prob{\emptyset} = \prob{\bigcup_{n\in\bb N} \emptyset} = \sum_{n\in\bb N} \prob{\emptyset}. \] Since $P$ takes real values we know the series must converge. This can only happen if $P(\emptyset) = 0$. \end{proof} \begin{definition}[Monotonous sequence of sets]\label{def:monotonous-sets} A sequence of sets $\paren{A_n}_{n\in\bb N_0}$ is said to be \emph{increasing} if $A_n \subseteq A_{n+1}$ for every $n \in \bb N_0$. Similarly, a sequence is called \emph{decreasing} if $A_n \supseteq A_{n+1}$ for every $n \in \bb N_0$. A sequence is called \emph{monotonous} if it is either increasing or decreasing. For such sequences we define \[ \lim_{n\to\infty} A_n = \begin{cases} \bigcup_{n=1}^{\infty} A_n & \text{if $A_n$ is increasing}, \\ \bigcap_{n=1}^{\infty} A_n & \text{if $A_n$ is decreasing}. \\ \end{cases} \] \end{definition} \begin{theorem} Let $(\Omega, \mathcal A, \probop)$ be a probability space. \begin{enumerate} \item \emph{Finite additivity} for a pairwise disjoint family of sets $\set{A_n \in \mathcal A \smid n \in \set{1, \dots, N}}$ \[ \prob{\bigcup_{n=1}^{N} A_n} = \sum_{n=1}^{N} \prob{A_n}. \] \item $\forall A \in \mathcal A : \prob{A^\complement} = 1 - \prob{A}$. \item For a monotonous sequence $\paren{A_n}_{n\in\bb N_0}$ \[ \prob{\lim_{n\to\infty} A_n} = \lim_{n\to\infty} \prob{A_n} \] \end{enumerate} \end{theorem} \begin{proof} \begin{enumerate} \item We start by showing finite additivity as defined above holds. Consider the finite family of sets defined above, we define a related infinite family of sets as follows \[ B_n = \begin{cases} A_n & \text{if $n \leq N$}, \\ \emptyset & \text{otherwise}. \end{cases} \] Note that since we only added empty sets this new family is also pairwise disjoint and that the countable union over $B_n$ is equal to the finite union over $A_n$. This leads to \begin{align*} \prob{\bigcup_{n=1}^{N} A_n} &= \prob{\bigcup_{n=1}^{\infty} B_n}. \\ \intertext{Next we apply countable additivity by \cref{def:probability-measure} and get} &= \sum_{n=1}^{\infty} \prob{B_n} \\ &= \sum_{n=1}^{N} \prob{A_n} + \sum_{n=N+1}^{\infty} \prob{\emptyset}. \intertext{In \cref{obs:prob-empty} we concluded $\prob{\emptyset} = 0$ so} &= \sum_{n=1}^{N} \prob{A_n}. \end{align*} This concludes the proof of finite additivity. \item Let $A \in \mathcal A$ be arbitrary. By \cref{def:probability-measure}, finite additivity and the definition of complement we get \[ 1 = \prob{\Omega} = \prob{A \cup A^\complement} = \prob{A} + \prob{A^\complement}. \] Subtracting $\prob{A}$ from both sides gives us \[ \prob{A^\complement} = 1 - \prob{A}. \] This concludes the proof of the second point. \item Let $(A_n)_{n\in\bb N_0}$ be a monotonous sequence in $\mathcal A$. We first consider the case where $(A_n)$ is increasing. We define a related sequence as follows \[ B_n = \begin{cases} A_1 & \text{if $n=1$,} \\ A_n \setminus A_{n-1} & \text{otherwise.} \end{cases} \] Note that $(B_n)$ is pairwise disjoint and that for any $n \in \bb N_0$ \[ \bigcup_{i=1}^n A_i = \bigcup_{i=1}^n B_i = A_n \] By using the properties of this related sequence and by applying sigma additivity we get \begin{align*} \prob{\lim_{n\to\infty} A_n} &= \prob{\bigcup_{i=1}^\infty A_i} \\ &= \prob{\bigcup_{i=1}^\infty B_i} \\ &= \sum_{i=1}^\infty \prob{B_i}. \\ \intertext{Next we use the definition of a series and apply finite additivity (in reverse) as follows} &= \lim_{n\to\infty} \sum_{i=1}^n \prob{B_i} \\ &= \lim_{n\to\infty} \prob{\bigcup_{i=1}^n B_i} \\ &= \lim_{n\to\infty} \prob{A_n}. \end{align*} This concludes of the proof when $(A_n)$ is increasing. Next assume that $(A_n)$ is decreasing. Note that the complement sequence $(A_n^\complement)$ is an increasing sequence. Combined with De Morgan's laws and the earlier formula for the probability of a complement we get \begin{align*} \prob{\lim_{n\to\infty} A_n} &= \prob{\bigcap_{i=1}^\infty A_i} \\ &= 1 - \prob{\bigcup_{i=1}^\infty A_i^\complement} \\ &= 1 - \prob{\lim_{n\to\infty} A_n^\complement}. \\ \intertext{since the complement sequence is an increasing sequence we can apply the result from before and we get} &= 1 - \lim_{n\to\infty} \prob{A_n^\complement} \\ &= 1 - \lim_{n\to\infty} 1 - \prob{A_n} \\ &= \lim_{n\to\infty} \prob{A_n}. \end{align*} This concludes the proof for the final case. \qedhere \end{enumerate} \end{proof} \end{document}